Transcellular biosynthesis contributes to the production of leukotrienes during inflammatory responses in vivo.

نویسندگان

  • Jean-Etienne Fabre
  • Jennifer L Goulet
  • Estelle Riche
  • MyTrang Nguyen
  • Kenneth Coggins
  • Steven Offenbacher
  • Beverly H Koller
چکیده

Leukotrienes are lipid mediators that evoke primarily proinflammatory responses by activating receptors present on virtually all cells. The production of leukotrienes is tightly regulated, and expression of 5-lipoxygenase, the enzyme required for the first step in leukotriene synthesis, is generally restricted to leukocytes. Arachidonic acid released from the cell membrane of activated leukocytes is rapidly converted to LTA(4) by 5-lipoxygenase. LTA(4) is further metabolized to either LTC(4) or LTB(4) by the enzyme LTC(4) synthase or LTA(4) hydrolase, respectively. Unlike 5-lipoxygenase, these enzymes are expressed in most tissues. This observation previously has led to the suggestion that LTA(4) produced by leukocytes may, in some cases, be delivered to other cell types before being converted into LTC(4) or LTB(4). While in vitro studies indicate that this process, termed transcellular biosynthesis, can lead to the production of leukotrienes, it has not been possible to determine the significance of this pathway in vivo. Using a series of bone marrow chimeras generated from 5-lipoxygenase- and LTA(4) hydrolase-deficient mice, we show here that transcellular biosynthesis contributes to the production of leukotrienes in vivo and that leukotrienes produced by this pathway are sufficient to contribute significantly to the physiological changes that characterize an ongoing inflammatory response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eicosanoid transcellular biosynthesis: from cell-cell interactions to in vivo tissue responses.

The biosynthesis of the biologically active metabolites of arachidonic acid involves a number of enzymes that are differentially expressed in cells. Prostaglandins and thromboxanes are derived from the chemically unstable prostaglandin (PG) H(2) intermediate synthesized by PGH synthases (cyclooxygenase-1/2) and leukotrienes from chemically unstable leukotriene A(4) by 5-lipoxygenase. Additional...

متن کامل

Transcellular sulfidopeptide leukotriene biosynthetic capacity of vascular cells.

Cells in the vasculature, including polymorphonuclear leukocytes, platelets, and endothelial cells, have been shown to be jointly involved in the biosynthesis of active lipid mediators derived from arachidonic acid. Stimulation of neutrophils with the calcium ionophore A23187 as a model for cell activation results in production of leukotriene (LT)A4 with subsequent intracellular conversion into...

متن کامل

Biosynthesis of eicosanoids and transcellular metabolism of leukotrienes in murine bone marrow cells.

Leukotriene B(4) (LTB(4)) biosynthesis by polymorphonuclear leukocytes (PMNs) is an important factor of inflammatory responses. PMNs also release LTA(4), an unstable intermediate that can be taken up by neighboring cells and metabolized into LTC(4). Most studies of LT synthesis have been carried out using human PMNs, but very little information is available about mouse PMNs. Mouse bone marrow P...

متن کامل

Transcellular biosynthesis of eicosanoids.

The metabolism of arachidonic acid into biologically active compounds involves the sequential activity of a number of enzymes, sometimes showing a unique expression profile in different cells. The main metabolic pathways, namely the cyclooxygenases and the 5-lipoxygenase, both generate chemically unstable intermediates: prostaglandin (PG) H(2) and leukotriene (LT) A(4), respectively. These are ...

متن کامل

The Protective Effect of Antioxidant and Anti-inflammatory Nanoparticles in Renal Ischemia-Reperfusion Damage

Background& objectives: Renal ischemia-reperfusion (IR) damage occurs during renal transplantation in end-stage renal disease (ESRD) patients which activate immune responses. Inflammatory responses by increased levels of cytokines can lead to acute kidney injury (AKI) that contributes to the loss of renal grafts and graft dysfunction. The purpose of this study was to review the therapeutic effe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 109 10  شماره 

صفحات  -

تاریخ انتشار 2002